KronLinInv
0.3
Kronecker-product-based linear inversion
|
subroutine, public ompi_kronlininv::posteriormean | ( | real(dp), dimension(:,:), intent(in) | U1, |
real(dp), dimension(:,:), intent(in) | U2, | ||
real(dp), dimension(:,:), intent(in) | U3, | ||
real(dp), dimension(:), intent(in) | diaginvlambda, | ||
real(dp), dimension(:,:), intent(in) | Z1, | ||
real(dp), dimension(:,:), intent(in) | Z2, | ||
real(dp), dimension(:,:), intent(in) | Z3, | ||
real(dp), dimension(:,:), intent(in) | G1, | ||
real(dp), dimension(:,:), intent(in) | G2, | ||
real(dp), dimension(:,:), intent(in) | G3, | ||
real(dp), dimension(:), intent(in) | mprior, | ||
real(dp), dimension(:), intent(in) | dobs, | ||
real(dp), dimension(:), intent(out) | postm | ||
) |
Computes the posterior mean
[in] | U1,U2,U3 | \( \mathbf{U}_1 \), \( \mathbf{U}_2 \), \( \mathbf{U}_3 \) of \( F_{\sf{A}} \) |
[in] | diaginvlambda | \( F_{\sf{B}} \) |
[in] | Z1,Z2,Z3 | \( \mathbf{U}_1^{-1} \mathbf{C}_{\rm{M}}^{\rm{x}} (\mathbf{G}^{\rm{x}})^{\sf{T}}(\mathbf{C}_{\rm{D}}^{\rm{x}})^{-1} \), \( \mathbf{U}_2^{-1} \mathbf{C}_{\rm{M}}^{\rm{y}} (\mathbf{G}^{\rm{y}})^{\sf{T}} (\mathbf{C}_{\rm{D}}^{\rm{y}})^{-1}\), \( \mathbf{U}_3^{-1} \mathbf{C}_{\rm{M}}^{\rm{z}} (\mathbf{G}^{\rm{z}})^{\sf{T}} (\mathbf{C}_{\rm{D}}^{\rm{z}})^{-1} \) of \( F_{\sf{D}} \) |
[in] | G1,G2,G3 | The 3 forward modeling matrices \( \mathbf{G} = \mathbf{G_1} \otimes \mathbf{G_2} \otimes \mathbf{G_3} \) |
[in] | mprior | Prior model (vector) |
[in] | dobs | Observed data (vector) |
[out] | postm | Calculated posterior mean model (vector) |
Definition at line 949 of file ompi_kronlininv.f08.